skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Zhenming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given historical traffic distributions and associated urban conditions observed in a city, the conditional urban traffic estimation problem aims at estimating realistic future projections of the traffic under a set of new urban conditions, e.g., new bus routes, rainfall intensity, and travel demands. The problem is important in reducing traffic congestion, improving public transportation efficiency, and facilitating urban planning. However, solving this problem is challenging due to the strong spatial dependencies of traffic patterns and the complex relations between the traffic and urban conditions. Recently, we proposed a Complex-Condition-Controlled Generative Adversarial Network C3-GAN, which tackles both of the challenges and solves the urban traffic estimation problem under various complex conditions by adding a fixed embedding network and an inference network on top of the standard conditional GAN model. The randomly chosen embedding network transforms the complex conditions to latent vectors, and the inference network enhances the connections between the embedded vectors and the traffic data. However, a randomly chosen embedding network cannot always successfully extract features of complex urban conditions, which indicates C3-GAN is unable to uniquely map different urban conditions to proper latent distributions. Thus, C3-GAN would fail in certain traffic estimation tasks. Besides, C3-GAN is hard to train due to vanishing gradients and mode collapse problems. To address these issues, in this article, we extend our prior work by introducing a new deep generative model, namely, C3-GAN+, which significantly improves the estimation performance and model stability. C3-GAN+ has new objective, architecture, and training algorithm. The new objective applies Wasserstein loss to the conditional generation case to encourage stable training. Shared convolutional layers between the discriminator and the inference network help to capture spatial dependencies of traffic more efficiently, part of the shared convolutional layers are used to update the embedding network periodically aiming to encourage good representation and avoid model divergence. Extensive experiments on real-world datasets demonstrate that our C3-GAN+ produces high-quality traffic estimations and outperforms state-of-the-art baseline methods. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Recognizing food types through sensor signals for unseen users remains remarkably challenging, despite extensive recent studies. The efficacy of prior machine learning techniques is dwarfed by giant variations of data collected from multiple participants, partly because users have varied chewing habits and wear sensor devices in various manners. This work treats the problem as an instance of the domain adaptation problem, where each user represents a domain. We develop the first multi-source domain adaptation (MSDA) method for food-typing recognition, which consists of three major components: stratified normalization, a multi-source domain adaptor, and adaptive ensemble learning. New techniques are developed for each component. Using a real-world dataset comprised of 15 participants, we demonstrate that our method achieves\(1.33\times\)to\(2.13\times\)improvement in accuracy compared with nine state-of-the-art MSDA baselines. Additionally, we perform an in-depth ablation study to examine the behavior of each component and confirm their efficacy. 
    more » « less
  3. Personalized recommender systems play a crucial role in modern society, especially in e-commerce, news, and ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as constructing ones. The common offline evaluation strategy is holding out some user-interacted items from training data and evaluating the performance of recommendation models based on how many items they can retrieve. Specifically, for any hold-out item or so-called target item for a user, the recommendation models try to predict the probability that the user would interact with the item and rank it among overall items, which is calledglobal evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-out/target items. Based on the specific ranks, some metrics likeRecall@KandNDCG@Kcan be calculated to further quantify the quality of the recommender model. Instead of ranking the target items among all items, Koren first proposed to rank them among a smallsampled set of items, then quantified the performance of the models, which is calledsampling evaluation. Ever since then, there has been a large amount of work adopting sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-Kmetrics. In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections between sampling evaluation and global evaluation. We reveal the approximately linear relationship between sampling with respect to its global counterpart in terms of the top-KRecall metric. Second, we propose a new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire population. After the estimated rank distribution is obtained, the approximation of the global metric can be further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for small top-Kvalues in sampling evaluation is challenging, we propose a novel adaptive sampling method that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the sampling methods presented. 
    more » « less
  4. This paper revisits building machine learning algorithms that involve interactions between entities, such as those between financial assets in an actively managed portfolio, or interactions between users in a social network. Our goal is to forecast the future evolution of ensembles of multivariate time series in such applications (e.g., the future return of a financial asset or the future popularity of a Twitter account). Designing ML algorithms for such systems requires addressing the challenges of high-dimensional interactions and non-linearity. Existing approaches usually adopt an ad-hoc approach to integrating high-dimensional techniques into non-linear models and re- cent studies have shown these approaches have questionable efficacy in time-evolving interacting systems. To this end, we propose a novel framework, which we dub as the additive influence model. Under our modeling assump- tion, we show that it is possible to decouple the learning of high-dimensional interactions from the learning of non-linear feature interactions. To learn the high-dimensional interac- tions, we leverage kernel-based techniques, with provable guarantees, to embed the entities in a low-dimensional latent space. To learn the non-linear feature-response interactions, we generalize prominent machine learning techniques, includ- ing designing a new statistically sound non-parametric method and an ensemble learning algorithm optimized for vector re- gressions. Extensive experiments on two common applica- tions demonstrate that our new algorithms deliver significantly stronger forecasting power compared to standard and recently proposed methods. 
    more » « less
  5. Since Rendle and Krichene argued that commonly used sampling-based evaluation metrics are “inconsistent” with respect to the global metrics (even in expectation), there have been a few studies on the sampling-based recommender system evaluation. Existing methods try either mapping the sampling-based metrics to their global counterparts or more generally, learning the empirical rank distribution to estimate the top-K metrics. However, despite existing efforts, there is still a lack of rigorous theoretical understanding of the proposed metric estimators, and the basic item sampling also suffers from the “blind spot” issue, i.e., estimation accuracy to recover the top-K metrics when K is small can still be rather substantial. In this paper, we provide an in-depth investigation into these problems and make two innovative contributions. First, we propose a new item-sampling estimator that explicitly optimizes the error with respect to the ground truth, and theoretically highlights its subtle difference against prior work. Second, we propose a new adaptive sampling method that aims to deal with the “blind spot” problem and also demonstrate the expectation-maximization (EM) algorithm can be generalized for such a setting. Our experimental results confirm our statistical analysis and the superiority of the proposed works. This study helps lay the theoretical foundation for adopting item sampling metrics for recommendation evaluation and provides strong evidence for making item sampling a powerful and reliable tool for recommendation evaluation. 
    more » « less
  6. Lightweight neural networks refer to deep networks with small numbers of parameters, which can be deployed in resource-limited hardware such as embedded systems. To learn such lightweight networks effectively and efficiently, in this paper we propose a novel convolutional layer, namely Channel-Split Recurrent Convolution (CSR-Conv), where we split the output channels to generate data sequences with length T as the input to the recurrent layers with shared weights. As a consequence, we can construct lightweight convolutional networks by simply replacing (some) linear convolutional layers with CSR-Conv layers. We prove that under mild conditions the model size decreases with the rate of O( 1 ). Empirically we demonstrate the state-of-the-art T2 performance using VGG-16, ResNet-50, ResNet-56, ResNet- 110, DenseNet-40, MobileNet, and EfficientNet as backbone networks on CIFAR-10 and ImageNet. Codes can be found on https://github.com/tuaxon/CSR Conv. 
    more » « less
  7. Automatic food type recognition is an essential task of dietary monitoring. It helps medical professionals recognize a user’s food contents, estimate the amount of energy intake, and design a personalized intervention model to prevent many chronic diseases, such as obesity and heart disease. Various wearable and mobile devices are utilized as platforms for food type recognition. However, none of them has been widely used in our daily lives and, at the same time, socially acceptable enough for continuous wear. In this paper, we propose a food type recognition method that takes advantage of Airpods Pro, a pair of widely used wireless in-ear headphones designed by Apple, to recognize 20 different types of food. As far as we know, we are the first to use this socially acceptable commercial product to recognize food types. Audio and motion sensor data are collected from Airpods Pro. Then 135 representative features are extracted and selected to construct the recognition model using the lightGBM algorithm. A real-world data collection is conducted to comprehensively evaluate the performance of the proposed method for seven human subjects. The results show that the average f1-score reaches 94.4% for the ten-fold cross- validation test and 96.0% for the self-evaluation test. 
    more » « less